近日linux记录

最近忙于部署一些应用,发现自己对于一些centos的基础不是很了解,主要是init.d下的一些脚本和bash的一些信号了解点了。

1

自己写init.d下的启动脚本的时候必须有下面2行

# chkconfig: 345 85 15
# description: Nginx is an HTTP(S) server, HTTP(S) reverse

本来一直以为只是简单的注释,但是发现其实并没有那么简单,这2行是必须的。
chkconfig 这行是为了在 chkconfig nginx on/off指定的时候用的。

其中345表示在哪些运行级别启用,一般就是都是345这3个级别。

85的意义是当你chkconfig nginx on的时候,它在对应的运行级别下的启动顺序是85,在这里就是S85nginx。这个是从0开始,最终到99,一般99是rc.local

15的意义是当你chkconfig nginx off的时候,它在对应的运行级别下的停止顺序是15,在这里就是K15nginx。

description 就是描述这个应用程序的。

2
在stop方法中我们经常用到killproc这个方法。但是在系统中其实没有killproc这个方法,只有kill和killall。其实这个方法是在/etc/rc.d/init.d/functions这里进行定义的。

这也是为什么要在开头source进去的原因之一。

3
在启动和关闭应用程序中返回的[success]和[failure]其实直接通过echo出来的,而是通过获取返回信号再进行echo的


echo -e "33[1;32;1m[success]33[0m"

出来的。而是 daemon 方法返回的结果。这就是为什么start方法中启动应用程序之前都加上 daemon,而#?就是返回的信号。当然daemon也是在/etc/rc.d/init.d/functions中定义的。当然返回的内容其实也是上面说的echo的那个。

4

kill 的各种信号。之前我常用的几个信号是0,9,15.

0 表示测试这个进程是否活着

9 表示强制关闭

15 表示正常的关闭,默认不加信号就是指代15

但是发现有些应用程序还有USR1这样的信号,比如在nginx中reopen log,这个用在轮询日志的时候使用。

关于更多Nginx中的各种信号请参考http://wiki.nginx.org/CommandLine

下面是1-31所有信号的解释,来源是soso上的问答,原始来源找不到了,不过还是很感谢。

但是现在有增加了很多信号,通过kill -l可以查看

kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3

38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7

58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

下面我们对编号小于SIGRTMIN的信号进行讨论。

1) SIGHUP

本信号在用户终端连接(正常或非正常)结束时发出, 通常是在终端的控制进程结束时, 通知同一session内的各个作业, 这时它们与控制终端不再关联。

登录Linux时,系统会分配给登录用户一个终端(Session)。在这个终端运行的所有程序,包括前台进程组和后台进程组,一般都属于这个 Session。当用户退出Linux登录时,前台进程组和后台有对终端输出的进程将会收到SIGHUP信号。这个信号的默认操作为终止进程,因此前台进 程组和后台有终端输出的进程就会中止。不过可以捕获这个信号,比如wget能捕获SIGHUP信号,并忽略它,这样就算退出了Linux登录,wget也 能继续下载。

此外,对于与终端脱离关系的守护进程,这个信号用于通知它重新读取配置文件。

2) SIGINT

程序终止(interrupt)信号, 在用户键入INTR字符(通常是Ctrl-C)时发出,用于通知前台进程组终止进程。

3) SIGQUIT

和SIGINT类似, 但由QUIT字符(通常是Ctrl-\)来控制. 进程在因收到SIGQUIT退出时会产生core文件, 在这个意义上类似于一个程序错误信号。

4) SIGILL

执行了非法指令. 通常是因为可执行文件本身出现错误, 或者试图执行数据段. 堆栈溢出时也有可能产生这个信号。

5) SIGTRAP

由断点指令或其它trap指令产生. 由debugger使用。

6) SIGABRT

调用abort函数生成的信号。

7) SIGBUS

非法地址, 包括内存地址对齐(alignment)出错。比如访问一个四个字长的整数, 但其地址不是4的倍数。它与SIGSEGV的区别在于后者是由于对合法存储地址的非法访问触发的(如访问不属于自己存储空间或只读存储空间)。

8) SIGFPE

在发生致命的算术运算错误时发出. 不仅包括浮点运算错误, 还包括溢出及除数为0等其它所有的算术的错误。

9) SIGKILL

用来立即结束程序的运行. 本信号不能被阻塞、处理和忽略。如果管理员发现某个进程终止不了,可尝试发送这个信号。

10) SIGUSR1

留给用户使用

11) SIGSEGV

试图访问未分配给自己的内存, 或试图往没有写权限的内存地址写数据.

12) SIGUSR2

留给用户使用

13) SIGPIPE

管道破裂。这个信号通常在进程间通信产生,比如采用FIFO(管道)通信的两个进程,读管道没打开或者意外终止就往管道写,写进程会收到SIGPIPE信号。此外用Socket通信的两个进程,写进程在写Socket的时候,读进程已经终止。

14) SIGALRM

时钟定时信号, 计算的是实际的时间或时钟时间. alarm函数使用该信号.

15) SIGTERM

程序结束(terminate)信号, 与SIGKILL不同的是该信号可以被阻塞和处理。通常用来要求程序自己正常退出,shell命令kill缺省产生这个信号。如果进程终止不了,我们才会尝试SIGKILL。

17) SIGCHLD

子进程结束时, 父进程会收到这个信号。

如果父进程没有处理这个信号,也没有等待(wait)子进程,子进程虽然终止,但是还会在内核进程表中占有表项,这时的子进程称为僵尸进程。这种情 况我们应该避免(父进程或者忽略SIGCHILD信号,或者捕捉它,或者wait它派生的子进程,或者父进程先终止,这时子进程的终止自动由init进程来接管)。

18) SIGCONT

让一个停止(stopped)的进程继续执行. 本信号不能被阻塞. 可以用一个handler来让程序在由stopped状态变为继续执行时完成特定的工作. 例如, 重新显示提示符…

19) SIGSTOP

停止(stopped)进程的执行. 注意它和terminate以及interrupt的区别:该进程还未结束, 只是暂停执行. 本信号不能被阻塞, 处理或忽略.

20) SIGTSTP

停止进程的运行, 但该信号可以被处理和忽略. 用户键入SUSP字符时(通常是Ctrl-Z)发出这个信号

21) SIGTTIN

当后台作业要从用户终端读数据时, 该作业中的所有进程会收到SIGTTIN信号. 缺省时这些进程会停止执行.

22) SIGTTOU

类似于SIGTTIN, 但在写终端(或修改终端模式)时收到.

23) SIGURG

有”紧急”数据或out-of-band数据到达socket时产生.

24) SIGXCPU

超过CPU时间资源限制. 这个限制可以由getrlimit/setrlimit来读取/改变。

25) SIGXFSZ

当进程企图扩大文件以至于超过文件大小资源限制。

26) SIGVTALRM

虚拟时钟信号. 类似于SIGALRM, 但是计算的是该进程占用的CPU时间.

27) SIGPROF

类似于SIGALRM/SIGVTALRM, 但包括该进程用的CPU时间以及系统调用的时间.

28) SIGWINCH

窗口大小改变时发出.

29) SIGIO

文件描述符准备就绪, 可以开始进行输入/输出操作.

30) SIGPWR

Power failure

31) SIGSYS

非法的系统调用。

在以上列出的信号中,程序不可捕获、阻塞或忽略的信号有:SIGKILL,SIGSTOP

不能恢复至默认动作的信号有:SIGILL,SIGTRAP

默认会导致进程流产的信号有:SIGABRT,SIGBUS,SIGFPE,SIGILL,SIGIOT,SIGQUIT,SIGSEGV,SIGTRAP,SIGXCPU,SIGXFSZ

默认会导致进程退出的信号有:SIGALRM,SIGHUP,SIGINT,SIGKILL,SIGPIPE,SIGPOLL,SIGPROF,SIGSYS,SIGTERM,SIGUSR1,SIGUSR2,SIGVTALRM

默认会导致进程停止的信号有:SIGSTOP,SIGTSTP,SIGTTIN,SIGTTOU

默认进程忽略的信号有:SIGCHLD,SIGPWR,SIGURG,SIGWINCH

此外,SIGIO在SVR4是退出,在4.3BSD中是忽略;SIGCONT在进程挂起时是继续,否则是忽略,不能被阻塞。

###########################################
Best regards Timo Seven
blog:http://www.timoseven.com
twitter: http://twitter.com/zauc
Linux System Admin & MySQL DBA

Linux系统启动过程详解

作为一个系统管理员,对于操作系统底层的熟悉是我们相对于软件工程师优势所在,所以一些基础的东西我 可是还要好好加深哦,而系统管理员不光是要学会对系统软件的配置和优化,这些东西所有人经过一段时间的是都能会的,有些时候我们必须自己写些程序实现点小 功能,这些就是跟人家的区别和优势了,当然我自己还有我自己的方向的。

转自:http://www.cnscn.org(CNS电脑与英语学习网)
1)BIOS自检
2)启动Grub/Lilo
3)加载内核
4)执行init进程
5)通过/etc/inittab文件进行初始化
6)登陆Linux

1)BIOS自检
a)POST(Power On Self Test),对硬件进行检测
计算机在通电后首先由BIOS进行自检,即所谓的POST(Power On Self Test),对硬件进行检测
依据BIOS内设置的引导顺序从硬盘、软盘或CDROM中读入”引导块”
在PC中,Linux是从BIOS中的地址0xFFFF0处开始的
BIOS的第一个步骤是加电自检(POST),对硬件进行检测
第二个步骤是进行本地设备的枚举和初始化
BIOS由两部分组成: POST代码和运行时服务
当POST完成后,它从内存中清理出来,但BIOS运行时服务依然保留在内存中,目标操作系统可以使用这些服务
要引导一个操作系统,BIOS运行时会按照CMOS的设置的顺序来搜索处于活动状态并可引导的设备:软盘、CD-ROM、硬盘上的分区、网络上的某个设备、USB(通常Linux是从硬盘引导的
主引导记录MBR中包含主引导加载程序。MBR是一个512字节大小的扇区,位于磁盘上的第一个扇区中(0道0柱面1扇区))当MBR被加载到RAM中之后,BIOS会把控制权交给MBR

b)提取MBR的信息
要看MBR的内容,请使用下面的命令
#从/dev/sda上读取前512个字节的内容,并将其写入mbr.bin文件中
[root@localhost pam.d]# dd if=/dev/sda of=mbr.bin bs=512 count=1

#以十六进制和ASCII码格式打印这个二进制文件的内容
[root@localhost pam.d]# od -xa mbr.bin
0000000 48eb 0090 d08e 00bc fb7c d88e b9fc 0080
k   H dle nul  so   P   < nul   |   {  so   X   |   9 nul nul
0000020 f48b 00bf 8e06 f3c0 a566 2fea 0006 1000
vt   t   ? nul ack  so   @   s   f   %   j   / ack nul nul dle

2)启动GRUB/Lilo
GRUB和LILO都是引导加载程序,它们会引导操作系统。当机器引导它的操作系统时,BIOS会读取引导介质上最前面的512字节(即MBR: master boot record)

3)加载内核
当内核映像被加载到内存后,内核阶段就加开始了
内核映像并不是一个可执行的内核,而是一个压缩过的内核映像。通常它是一个zImage(压缩映像,小于512KB)或bzImage(较大的压缩映像,大于512KB),它是提前使用zlib进行压缩的
在这个内核映像前面是一个例程,它实现少量硬件设置,并对内核映像中包含的内核进行解压,然后将其放入高端内存中,如果有初始RAM磁盘映像,就会将它移动到内存中,并标明以后使用,然后此例程会调用内核,并开始启动内核引导的过程
在GRUB命令中,我们可以使用initrd映像引导一个特定的内核,方法如下:
grub> kernel /bzImage-2.6.14.2
[Linux-bzImage, setup=0x1400, size=0x29672e]

grub>initrd /initrd-2.6.14.2.img
[Linux-initrd @ 0x5f13000, 0xcc199 bytes]

grub> boot
Uncompressing Linux… Ok, booting the kernel.

如果不知道要引导的内核的名称,只需使用/然后按下Tab键,就会显示内核和initrd映像列表

对grub命令行进行加密
a)使用命令/sbin/grub-md5-crypt来产生grub使用的密码
[root@localhost pam.d]# /sbin/grub-md5-crypt
Password:
Retype password:
$1$3YbPF$zFVRY6J8VxNR9Ok4fXRkr1

b)修改/etc/grub.conf加入password –md5 $1$3YbPF$zFVRY6J8VxNR9Ok4fXRkr1 一定要放在title之前
这样重启系统时在grub的启动grub菜单时,想再按e命令进行编辑时,必须先按p键后输入密码才成

4)执行init进程
init进程是所有进程的起点,内核在完成内核引导后,即在本线程(进程)空间内加载init程序,它的进程号为1
init进程是所有进程的发起者和控制者
init进程有两个作用:
扮演终结父进程的角色:所有的孤儿进程都会被init进程接管
进入某个特定的运行级别时运行相应的程序,以此对各种运行级别进行管理,这个作用由/etc/inittab文件定义的

5)通过/etc/inittab文件进行初始化
init进程的工作是根据/etc/inittab来执行相应的脚本进行系统初始化,如设置键盘、字体,装载模块,设置网络等,对于RedHat来说,按以下顺序执行
a)执行/etc/rc.d/rc.sysinit(由init执行的第一个脚本)
此步可进行的工作有:
设置$PATH变量
配置网络
为虚拟内存启动交换
设置系统的主机名
检查root文件系统,以进行必要的修复
检查root文件系统的配额
为root文件系统打开用户和组的配额
以读/写的方式重新装载root文件系统
清除被装载的文件系统表/etc/matb
把root文件系统输入到mtab
使用系统为装入模块做准备
查找模块的相关文件
检查文件系统,以进行必要的修复
加载所有其他文件系统
清除几个/etc文件,如/etc/mtab、/etc/fastboot和/etc/nologin
删除UUCP的lock文件
删除过时的子系统文件
删除过时的pid文件
设置系统时钟
打开交换
初始化串行端口
装入模块

b)执行/etc/rc.d/rcX.d[KS]
首先终止K开头的服务(用来关闭一个服务),然后启动S开头的服务(用来启动一个服务)
对每一个运行级别来说,在/etc/rc.d子目录中都有一个对应的下级目录。
这些运行级别的下级子目录的命名方法上rcX.d, 其中X就是代表运行级别的数字
在各个运行级别的子目录中,都建立有到/etc/rc.d/init.d子目录中命令脚本程序的符号链接
链接的名称在K与S后有一个数字,表示执行顺序,数字小的先执行如K01tog-pegasus  、 S00microcode_ctl
对以K开头的脚本执行时系统会传递stop参数,而S开头的脚本系统会传递start参数

c)执行/etc/rc.d/rc.local
Redhat中运行模式2,3,5都把/etc/rc.d/rc.local作为初始化脚本中的最后一个文件,所以用户可以自己在这个文件中添加一些需要在其他初始化工作之后,登陆之前执行的命令

6)执行/bin/login
login程序会提示使用者需输入帐号与密码,接着编码并确认密码的正确性,若二者相合,则为使用者进行初始化环境,并将控制权交给shell,即等用户登录。

—————-至此,Linux启动过程全部结束———————-